Saturday, August 13, 2016

Source Codes and Simulations

Matlab M Files


% Free Space Propagation Loss
clc;
close all;
clear all;
f = input('Enter carrrier frequency(MHz)');
c = 300;
d = 1:1:10000;
Lp =((4*pi*d*f)/c).^2;
subplot(2,1,1);
plot(d,Lp,'b');
xlabel('x--> D (distance in Meter)');
ylabel('y--> Lp (path loss)');
title('Free space model');
grid on
subplot(2,1,2);
plot(d,10*log(Lp),'r');
xlabel('x--> D (distance in Meter)');
ylabel('y--> Lp (Path loss in dB)');
title('Free space model');
grid on;

% Free Space Propagation Loss 2
clc;
close all;
clear all;
f = [1000 2000 3000];
c = 300;
d = 1:1:10000;
Lp1 =20*log10((4*pi*d*f(1))/c);
Lp2 =20*log10((4*pi*d*f(2))/c);
Lp3 =20*log10((4*pi*d*f(3))/c);
figure(1);
plot(d,Lp1,'b',d,Lp2,'r',d,Lp3,'g');
xlabel('x--> D (distance in Meter)');
ylabel('y--> Lp (path loss in dB)');
title('Free space model');
hold on;
legend('f=1000MHz' , 'f=2000MHz' , 'f=3000 MHz');
grid on;


% ATTENUATION OVER REFLECTING SURFACE
clc;
close all;
clear all;

hb=input('Enter base station ant. ht.(m)');   
hm=input('Enter mobile ant. ht.(m)');
D = 1:1:10000;
   lp_plane = D.^4/(hb^2*hm^2);
   
   
subplot(2,1,1);
plot(D,lp_plane,'b');
xlabel('x--> D (distance in m)');
ylabel(' y--> Lp (Path loss)');
title('Plane earth model');
grid on;
subplot(2,1,2);
plot(D,10*log(lp_plane),'r');
xlabel(' x--> D (distance in m)');
ylabel(' y--> Lp (Path loss in dB)');
title('Plane earth model');
grid on;

% ATTENUATION OVER REFLECTING SURFACE 2
clc;
close all;
clear all;

hb=[30 50 80];   
hm=3;
D = 1:1:10000;
   lp_plane1 = 10*log10(D.^4/(hb(1)^2*hm^2));
   lp_plane2 = 10*log10(D.^4/(hb(2)^2*hm^2));
   lp_plane3 = 10*log10(D.^4/(hb(3)^2*hm^2));
   
   
figure(1);
plot(D,lp_plane1,'b',D,lp_plane2,'r',D,lp_plane3,'g');
xlabel('x--> D (distance in m)');
ylabel(' y--> Lp (Path loss)');
title('Plane earth model');
hold on;
legend('hb=30m' , 'hb=50m' , 'hb=80m');
grid on;

% Okumura/Hata Model
clc;
close all;
clear all;
d = 1:0.001:20;
hm = input('Enter mobile ant.ht.(1-30m)');
hb = input('Enter base station ant. ht.(30-200m)');
fc = input('Enter the carrier frequency(150-2200MHz)');
if(fc<=200)
   ahm = 8.29*(log10(1.54*hm)).^2 - 11;
elseif(fc>=400)
   ahm = 3.2*(log10(11.75*hm)).^2 - 4.97;
else
   ahm = 1.1*(log10(fc)-0.7)*hm - (1.56*(log10(fc)) - 0.8);
end;
% A. Typical Urban
L50urban = 69.55 + 26.16*log10(fc) + (44.9 - 6.55*log10(hb))*log10(d) - 13.82*log10(hb) - ahm;
% B. Typical Suburban
L50suburban = L50urban - 2*(log10(fc/28)).^2 - 5.4;
% C. Typical Rural
L50rural = L50urban - 4.78*(log10(fc)).^2 + 18.33*log10(fc) - 40.94;
figure(1);
plot(d, L50urban, 'r');
hold on;
plot(d, L50suburban, 'b');
hold on;
plot(d, L50rural, 'g');
hold on;
legend('urban', 'suburban', 'rural');
grid on;
xlabel('d [km]');
ylabel('L [dB]');
title('Hata Model for Typical environments');

% Okumura/Hata Model 2
clc;
close all;
clear all;
d = 1:0.001:20;
hm = 5;
hb = 30;
fc1 = 150;
fc2 = 2200;
fc3 = 1000;
% a. For Large Cities
% 1. fc <= 200MHz
ahm200 = 8.29*(log10(1.54*hm)).^2 - 11;
% 2. fc  >= 400MHz
ahm400 = 3.2*(log10(11.75*hm)).^2 - 4.97;
% b. For Small & Medium-Sized Cities
ahmsm = 1.1*(log10(fc3)-0.7)*hm - (1.56*(log10(fc3)) - 0.8);
% A. Typical Urban
L50urban1 = 69.55 + 26.16*log10(fc1) + (44.9 - 6.55*log10(hb))*log10(d) - 13.82*log10(hb) - ahm400;
L50urban2 = 69.55 + 26.16*log10(fc2) + (44.9 - 6.55*log10(hb))*log10(d) - 13.82*log10(hb) - ahm200;
L50urban3 = 69.55 + 26.16*log10(fc3) + (44.9 - 6.55*log10(hb))*log10(d) - 13.82*log10(hb) - ahmsm;
% B. Typical Suburban
L50suburban1 = L50urban1 - 2*(log10(fc1/28)).^2 - 5.4;
L50suburban2 = L50urban2 - 2*(log10(fc2/28)).^2 - 5.4;
% C. Typical Rural
L50rural1 = L50urban1 - 4.78*(log10(fc1)).^2 + 18.33*log10(fc1) - 40.94;
L50rural2 = L50urban2 - 4.78*(log10(fc2)).^2 + 18.33*log10(fc2) - 40.94;
figure(1);
plot(d , L50urban1 , 'r', d , L50urban2 , '--r', d , L50urban3,':r');
hold on;
plot(d , L50suburban1 , 'b' , d , L50suburban2 , '--b');
hold on;
plot(d , L50rural1 , 'g' , d , L50rural2 , '--g');
hold on;
legend('large urban f=150 MHz' , 'large urban f=2200 MHz' , 'large urban f=1000 MHz' , 'suburban f=150 MHz' , 'suburban f=2200 MHz' , 'rural f=150 MHz' , 'rural f=2200 MHz');
grid on;
xlabel('d [km]');
ylabel('L [dB]');
title('Hata Model for different frequencies in different environments');

% Okumura/Hata Model 3
clc;
close all;
clear all;
d = 1:0.001:20;
hm = 5;
hb1 = 30;
hb2 = 100;
hb3 = 200;
fc = 1000;
% a. For Large Cities
% fc  >= 400MHz
ahm = 3.2*(log10(11.75*hm)).^2 - 4.97;
% A. Typical Urban
L50urban1 = 69.55 + 26.16*log10(fc) + (44.9 - 6.55*log10(hb1))*log10(d) - 13.82*log10(hb1) - ahm;
L50urban2 = 69.55 + 26.16*log10(fc) + (44.9 - 6.55*log10(hb2))*log10(d) - 13.82*log10(hb2) - ahm;
L50urban3 = 69.55 + 26.16*log10(fc) + (44.9 - 6.55*log10(hb3))*log10(d) - 13.82*log10(hb3) - ahm;
% B. Typical Suburban
L50suburban1 = L50urban1 - 2*(log10(fc/28)).^2 - 5.4;
L50suburban2 = L50urban2 - 2*(log10(fc/28)).^2 - 5.4;
L50suburban3 = L50urban3 - 2*(log10(fc/28)).^2 - 5.4;
% C. Typical Rural
L50rural1 = L50urban1 - 4.78*(log10(fc)).^2 + 18.33*log10(fc) - 40.94;
L50rural2 = L50urban2 - 4.78*(log10(fc)).^2 + 18.33*log10(fc) - 40.94;
L50rural3 = L50urban3 - 4.78*(log10(fc)).^2 + 18.33*log10(fc) - 40.94;
figure(1);
plot(d, L50urban1, 'r', d, L50urban2, '--r', d, L50urban3,':r');
hold on;
plot(d, L50suburban1, 'b', d, L50suburban2, '--b', d, L50suburban3, ':b');
hold on;
plot(d, L50rural1, 'g', d, L50rural2, '--g', d, L50rural3, ':g');
hold on;
legend('large urban hb=30', 'large urban hb=100', 'large urban hb=200', 'suburban hb=30', 'suburban hb=100', 'suburban hb=200', 'rural hb=30', 'rural hb=100','rural hb=200');
grid on;
xlabel('d [km]');
ylabel('L [dB]');
title('Hata Model for different base station ant. ht. in different environments');

% COST231 Model
clc;
close all;
clear all;
d = 1:0.001:5;
fc = input('Enter Carrier Frequency(800-2000MHz)');
W = input('Enter Street Width(m)');
b = input('Enter distance b/w building(m)');
hr = input('Enter height of roof(m)');
hm = input('Enter mobile antenna ht(1-3m)');
dhm = hr - hm;
phi = input('Enter incident angle related to street(0-90degree)');
hb = input('Enter base station ant. ht(4-50m)');
dhb = hb -hr;
if ((phi>0)&&(phi<=35))
   L0 = -10 + 0.354*phi;
elseif((phi>35)&&(phi<=55))
   L0 = 32.5 + 0.075*(phi-35);
elseif((phi>55)&&(phi<=90))
   L0 = 4 - 0.114*(phi-55);
end;
Lf = 32.4 + 20*log10(d) + 20*log10(fc);
Lrts = -16.9 - 10*log10(W) + 10*log10(fc) + 20*log(dhm) + L0
if(hb>=hr)
   Lbsh = -18*log10(11+dhb);
   kd = 18 - 15*dhb/dhm;
else
   Lbsh = 0;
   kd = 18;
end;
if(hb<=hr)
   ka = 54 - 0.8*hb;
else
   ka = 54;
end;
kf = 4 + 0.7*((fc/925)-1);
Lms = Lbsh + ka + kd*log10(d) + kf*log10(fc) - 9*log10(b);
if((Lrts + Lms)>0)
   L50  = Lf + Lrts + Lms;
else
   L50 = Lf;
end;
figure(1);
plot(d , L50);
grid on;
xlabel('d [km]');
ylabel('L [dB]');
title('COST231');

% COST231 Model 2
clc;
close all;
clear all;
d = 1:0.001:5;
fc1 = 800;
fc2 = 1000;
fc3 = 2000;
W = 15;
b = 30;
hr = 30;
hm = 2;
dhm = hr - hm;
phi = 90;
hb = 30;
dhb = hb -hr;
if ((phi>0)&&(phi<=35))
   L0 = -10 + 0.354*phi;
elseif((phi>35)&&(phi<=55))
   L0 = 32.5 + 0.075*(phi-35);
elseif((phi>55)&&(phi<=90))
   L0 = 4 - 0.114*(phi-55);
end;
Lf1 = 32.4 + 20*log10(d) + 20*log10(fc1);
Lf2 = 32.4 + 20*log10(d) + 20*log10(fc2);
Lf3 = 32.4 + 20*log10(d) + 20*log10(fc3);
Lrts1 = -16.9 - 10*log10(W) + 10*log10(fc1) + 20*log(dhm) + L0;
Lrts2 = -16.9 - 10*log10(W) + 10*log10(fc2) + 20*log(dhm) + L0;
Lrts3 = -16.9 - 10*log10(W) + 10*log10(fc3) + 20*log(dhm) + L0;
if(hb>=hr)
   Lbsh = -18*log10(11+dhb);
   kd = 18 - 15*dhb/dhm;
else
   Lbsh = 0;
   kd = 18;
end;
if(hb<=hr)
   ka = 54 - 0.8*hb;
else
   ka = 54;
end;
kf1 = 4 + 0.7*((fc1/925)-1);
Lms1 = Lbsh + ka + kd*log10(d) + kf1*log10(fc1) - 9*log10(b);
kf2 = 4 + 0.7*((fc2/925)-1);
Lms2 = Lbsh + ka + kd*log10(d) + kf2*log10(fc2) - 9*log10(b);
kf3 = 4 + 0.7*((fc3/925)-1);
Lms3 = Lbsh + ka + kd*log10(d) + kf3*log10(fc3) - 9*log10(b);
   L50_1  = Lf1 + Lrts1 + Lms1;
   L50_2  = Lf2 + Lrts2 + Lms2;
   L50_3  = Lf3 + Lrts3 + Lms3;
figure(1);
plot(d, L50_1, 'r', d, L50_2, 'b', d, L50_3, 'g');
hold on;
legend('f=800MHz' , 'f=1000MHz' , 'f=2000 MHz');
grid on;
xlabel('d [km]');
ylabel('L [dB]');
title('COST231');

% COST231 Model 3
clc;
close all;
clear all;
d = 1:0.001:5;
fc = 900;
W = 15;
b = 30;
hr = 3;
hm = 2;
dhm = hr - hm;
phi = 90;
hb1 = 4;
hb2 = 25;
hb3 = 40;
dhb1 = hb1 - hr;
dhb2 = hb2 - hr;
dhb3 = hb3 - hr;
if ((phi>0)&&(phi<=35))
   L0 = -10 + 0.354*phi;
elseif((phi>35)&&(phi<=55))
   L0 = 32.5 + 0.075*(phi-35);
elseif((phi>55)&&(phi<=90))
   L0 = 4 - 0.114*(phi-55);
end;
Lf = 32.4 + 20*log10(d) + 20*log10(fc);
Lrts = -16.9 - 10*log10(W) + 10*log10(fc) + 20*log(dhm)+ L0;
Lbsh1 = -18*log10(11+dhb1);
Lbsh2 = -18*log10(11+dhb2);
Lbsh3 = -18*log10(11+dhb3);
kd1 = 18 - 15*dhb1/dhm;
kd2 = 18 - 15*dhb2/dhm;
kd3 = 18 - 15*dhb3/dhm;
ka = 54;
kf = 4 + 0.7*((fc/925)-1);
Lms1 = Lbsh1 + ka + kd1*log10(d) + kf*log10(fc) - 9*log10(b);
Lms2 = Lbsh2 + ka + kd2*log10(d) + kf*log10(fc) - 9*log10(b);
Lms3 = Lbsh3 + ka + kd3*log10(d) + kf*log10(fc) - 9*log10(b);
L50_1  = Lf + Lrts + Lms1;
L50_2  = Lf + Lrts + Lms2;
L50_3  = Lf + Lrts + Lms3;
figure(1);
plot(d, L50_1, 'r', d, L50_2, 'b', d, L50_3, 'g');
hold on;
legend('hb=4m' , 'hb=25m' , 'hb=50m');
grid on;
xlabel('d [km]');
ylabel('L [dB]');
title('COST231');

% Okumura/Hata v/s COST231
% Comparision 1

clc;
close all;
clear all;
%common parameters
d = 1:0.001:5;
fc1 = 1000;
fc2 = 1500;
fc3 = 2000;
hm = 3;
hb = 50;
% Okumura/Hata
ahm = 3.2*(log10(11.75*hm)).^2 - 4.97;
Lhata_1 = 69.55 + 26.16*log10(fc1) + (44.9 - 6.55*log10(hb))*log10(d) - 13.82*log10(hb) - ahm;
Lhata_2 = 69.55 + 26.16*log10(fc2) + (44.9 - 6.55*log10(hb))*log10(d) - 13.82*log10(hb) - ahm;
Lhata_3 = 69.55 + 26.16*log10(fc3) + (44.9 - 6.55*log10(hb))*log10(d) - 13.82*log10(hb) - ahm;                                   
% COST 231
W = 15;
b = 30;
hr = 30;
phi = 90;
dhm = hr - hm;
dhb = hb -hr;
kd = 18 - 15*dhb/dhm;
ka = 54;
kf1 = 4 + 0.7*((fc1/925)-1);
kf2 = 4 + 0.7*((fc2/925)-1);
kf3 = 4 + 0.7*((fc3/925)-1);
   
Lcost_1  = 32.4 + 20*log10(d) + 20*log10(fc1) + -16.9 - 10*log10(W) + 10*log10(fc1) + 20*log(dhm) + 4 - 0.114*(phi-55) + -18*log10(11+dhb) + ka + kd*log10(d) + kf1*log10(fc1) - 9*log10(b);
Lcost_2  = 32.4 + 20*log10(d) + 20*log10(fc2) + -16.9 - 10*log10(W) + 10*log10(fc2) + 20*log(dhm) + 4 - 0.114*(phi-55) + -18*log10(11+dhb) + ka + kd*log10(d) + kf2*log10(fc2) - 9*log10(b);
Lcost_3  = 32.4 + 20*log10(d) + 20*log10(fc3) + -16.9 - 10*log10(W) + 10*log10(fc3) + 20*log(dhm) + 4 - 0.114*(phi-55) + -18*log10(11+dhb) + ka + kd*log10(d) + kf3*log10(fc3) - 9*log10(b);
                                
figure(1);
plot(d, Lcost_1, 'r', d, Lcost_2, '--r', d, Lcost_3,'xr');
hold on;
plot(d, Lhata_1, 'b', d, Lhata_2,'--b', d, Lcost_3,':b');
hold on;
legend('COST231 f=1000 MHz' ,'COST231 f=1500 MHz' ,'COST231 f=2000 MHz','Hata f=1000 MHz' , 'Hata f=1500 MHz' ,'Hata f=2000 MHz');
grid on;
xlabel('d [km]');
ylabel('L [dB]');
title('Comparision of Okumura/Hata Model and COST231 model ');


% Okumura/Hata v/s COST231
% Comparision 2
clc;
close all;
clear all;
%common parameters
d = 1:0.001:5;
fc = 1500;
hm = 3;
hb = [30 40 50];
% Okumura/Hata
ahm = 3.2*(log10(11.75*hm)).^2 - 4.97;
Lhata_1 = 69.55 + 26.16*log10(fc) + (44.9 - 6.55*log10(hb(1)))*log10(d) - 13.82*log10(hb(1)) - ahm;
Lhata_2 = 69.55 + 26.16*log10(fc) + (44.9 - 6.55*log10(hb(2)))*log10(d) - 13.82*log10(hb(2)) - ahm;
Lhata_3 = 69.55 + 26.16*log10(fc) + (44.9 - 6.55*log10(hb(3)))*log10(d) - 13.82*log10(hb(3)) - ahm;
% COST 231
W = 15;
b = 30;
hr = 30;
phi = 90;
dhm = hr - hm;
dhb = hb - hr;
kd = 18 - 15*dhb/dhm;
ka = 54;
kf = 4 + 0.7*((fc/925)-1);
Lcost_1  = 32.4 + 20*log10(d) + 20*log10(fc) + -16.9 - 10*log10(W) + 10*log10(fc) + 20*log(dhm) + 4 - 0.114*(phi-55) + -18*log10(11+dhb(1)) + ka + kd(1)*log10(d) + kf*log10(fc) - 9*log10(b);
Lcost_2  = 32.4 + 20*log10(d) + 20*log10(fc) + -16.9 - 10*log10(W) + 10*log10(fc) + 20*log(dhm) + 4 - 0.114*(phi-55) + -18*log10(11+dhb(2)) + ka + kd(2)*log10(d) + kf*log10(fc) - 9*log10(b);
Lcost_3  = 32.4 + 20*log10(d) + 20*log10(fc) + -16.9 - 10*log10(W) + 10*log10(fc) + 20*log(dhm) + 4 - 0.114*(phi-55) + -18*log10(11+dhb(3)) + ka + kd(3)*log10(d) + kf*log10(fc) - 9*log10(b);
figure(1);
plot(d, Lcost_1, 'r', d, Lcost_2, '--r', d, Lcost_3,'xr');
hold on;
plot(d, Lhata_1, 'b', d, Lhata_2, '--b', d, Lcost_3,':b');
hold on;
legend('COST231 hb = 30' ,'COST231 hb = 40' ,'COST231 hb = 50','Hata hb = 30' , 'Hata hb = 40' ,'Hata hb = 50');
grid on;
xlabel('d [km]');
ylabel('L [dB]');
title('Comparision of Okumura/Hata Model and COST231 model ');


%IMT-2000 Models
%Indoor Office Environment
clc;
close all;
clear all;
n = input('Enter the no. of floors in path: ');  
d = 1:1:10000;
y = ((n+2)/(n+1)-0.46);
L50 = 37 + 30*log10(d) + 18.3*n^y;
figure(1);
plot(d , L50);
grid on;
xlabel('d [m]');
ylabel('L [dB]');
title({'IMT 2000 Model';'Indoor Office Environment'});


%IMT-2000 Models
% Outdoor to Indoor and Pedestrian Environment
clc;
close all;
clear all;
fc = input('Enter Carrier Frequency(MHz)');  
d = 1:1:10000;
L50 = 40*log10(d) + 30*log10(fc) + 49;
figure(1);
plot(d , L50);
grid on;
xlabel('d [m]');
ylabel('L [dB]');
title({'IMT 2000 Model';'Outdoor Office Environment'});


%IMT-2000 Models
% Vehicular Environment
clc;
close all;
clear all;
d = 1:1:10000;
fc = input('Enter Carrier Frequency(MHz)');
hr = input('Enter height of roof(m)');
hb = input('Enter base station ant. ht(4-50m)');
dhb = hb -hr;
L50 = 40*(1-(4*(10^(-2))*dhb))*log10(d)-18*log10(dhb)+21*log10(fc) + 80;
figure(1);
plot(d , L50);
grid on;
xlabel('d [m]');
ylabel('L [dB]');
title({'IMT 2000 Model';'Vehicular Environment'});



% Erceg Model
clc;
close all;
clear all;
d0 =input('Enter reference distance (m)');
Xrho = 6;
hb = input('Enter base station ant. ht(m))');
f = input('Enter Carrier Frequency(close to 2000MHz)');
d = 1:1:10000;
a = [4.6 4 3.6];
b = [0.0075 0.0065 0.005];
c = [12.6 17.1 20];
for i = 1:3
y(i) = a(i) - b(i)*hb + c(i)/hb;
end;
Lp1 = 20*log10(4*pi*d0*f/300) + 10*y(1)*log10(d/d0) + Xrho;
Lp2 = 20*log10(4*pi*d0*f/300) + 10*y(2)*log10(d/d0) + Xrho;
Lp3 = 20*log10(4*pi*d0*f/300) + 10*y(3)*log10(d/d0) + Xrho;
figure(1);
plot(d, Lp1, 'r');
hold on;
plot(d, Lp2, 'b');
hold on;
plot(d, Lp3, 'g');
hold on;
legend('Type A', 'Type B', 'Type C');
grid on;
xlabel('d [m]');
ylabel('L [dB]');
title('Erceg Model for Typical environments');

% Modified Erceg Model
clc;
close all;
clear all;
d0 =input('Enter reference distance (m)');
Xrho = 6;
hb = input('Enter base station ant. ht(m))');
hm = input('Enter mobile ant. ht(>2m)');
f = input('Enter Carrier Frequency(MHz)');
d = 1:1:10000;
a = [4.6 4 3.6];
b = [0.0075 0.0065 0.005];
c = [12.6 17.1 20];
for i = 1:3
y(i) = a(i) - b(i)*hb + c(i)/hb;
end;
Lp1 = 20*log10(4*pi*d0*f/300) + 10*y(1)*log10(d/d0) + Xrho + 6*log10(f/2000) - 10.8*log10(hm/2);
Lp2 = 20*log10(4*pi*d0*f/300) + 10*y(2)*log10(d/d0) + Xrho + 6*log10(f/2000) - 10.8*log10(hm/2);
Lp3 = 20*log10(4*pi*d0*f/300) + 10*y(3)*log10(d/d0) + Xrho + 6*log10(f/2000) - 20*log10(hm/2);
figure(1);
plot(d, Lp1, 'r');
hold on;
plot(d, Lp2, 'b');
hold on;
plot(d, Lp3, 'g');
hold on;
legend('Type A', 'Type B', 'Type C');
grid on;
xlabel('d [m]');
ylabel('L [dB]');
title('Modified Erceg Model for Typical environments');

%Indoor Path-Loss Model
clc;
close all;
clear all;
n = input('Enter no. of Floors ');
d = 1:1:10000;
Lpdo = 38;
%Residential
y = 2.8;
Lfn = 4*n;
Xrho = 8;
LpR = Lpdo + 10*y*log10(d) + Lfn + Xrho;
%Office
y = 3;
Lfn = 15 + 4*(n-1);
Xrho = 10;
LpO = Lpdo + 10*y*log10(d) + Lfn + Xrho;
%Commercial
y = 2.2;
Lfn = 6 + 3*(n-1);
Xrho = 10;
LpC = Lpdo + 10*y*log10(d) + Lfn + Xrho;
figure(1);
plot(d,LpR,'b', d, LpO,'r', d, LpC,'g');
xlabel('x--> d (distance in m)');
ylabel(' y--> Lp (Path loss)');
title('Indoor Path-Loss Model');
hold on;
legend('Residential', 'Office', 'Commercial');
grid on;


Figure 1
Enter carrrier frequency(MHz) [1800]










Figure 2











Figure 3
Enter base station ant. ht.(m) [30]
Enter mobile ant. ht.(m) [3]









Figure 4











Figure 5
Enter mobile ant.ht.(1-30m) [3]
Enter base station ant. ht.(30-200m) [35]
Enter the carrier frequency(150-2200MHz) [1800]








Figure 6











Figure 7











Figure 8
Enter Carrier Frequency(800-2000MHz) [1800]
Enter Street Width(m) [15]
Enter distance b/w building(m) [30]
Enter height of roof(m) [25]
Enter mobile antenna ht(1-3m) [2]
Enter incident angle related to street(0-90degree) [90]
Enter base station ant. ht(4-50m) [30]




Figure 9










Figure 10












Figure 11











Figure 12











Figure 13
Enter the no. of floors in path: [10]










Figure 14
Enter Carrier Frequency(MHz) [1800]










Figure 15
Enter Carrier Frequency(MHz) [1800]
Enter height of roof(m) [25]
Enter base station ant. ht(4-50m) [30]








Figure 16
Enter base station ant. ht(10-80m)) [30]
Enter Carrier Frequency(close to 2000MHz) [1800]









Figure 17
Enter base station ant. ht(m)) [30]
Enter mobile ant. ht(>2m) [3]
Enter Carrier Frequency(MHz) [1800]








Figure 18
Enter no. of Floors  [4]